Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa.

Identifieur interne : 003323 ( Main/Exploration ); précédent : 003322; suivant : 003324

Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa.

Auteurs : Ruibo Hu [République populaire de Chine] ; Guang Qi ; Yingzhen Kong ; Dejing Kong ; Qian Gao ; Gongke Zhou

Source :

RBID : pubmed:20630103

Descripteurs français

English descriptors

Abstract

BACKGROUND

NAC (NAM, ATAF1/2 and CUC2) domain proteins are plant-specific transcriptional factors known to play diverse roles in various plant developmental processes. NAC transcription factors comprise of a large gene family represented by more than 100 members in Arabidopsis, rice and soybean etc. Recently, a preliminary phylogenetic analysis was reported for NAC gene family from 11 plant species. However, no comprehensive study incorporating phylogeny, chromosomal location, gene structure, conserved motifs, and expression profiling analysis has been presented thus far for the model tree species Populus.

RESULTS

In the present study, a comprehensive analysis of NAC gene family in Populus was performed. A total of 163 full-length NAC genes were identified in Populus, and they were phylogenetically clustered into 18 distinct subfamilies. The gene structure and motif compositions were considerably conserved among the subfamilies. The distributions of 120 Populus NAC genes were non-random across the 19 linkage groups (LGs), and 87 genes (73%) were preferentially retained duplicates that located in both duplicated regions. The majority of NACs showed specific temporal and spatial expression patterns based on EST frequency and microarray data analyses. However, the expression patterns of a majority of duplicate genes were partially redundant, suggesting the occurrence of subfunctionalization during subsequent evolutionary process. Furthermore, quantitative real-time RT-PCR (RT-qPCR) was performed to confirm the tissue-specific expression patterns of 25 NAC genes.

CONCLUSION

Based on the genomic organizations, we can conclude that segmental duplications contribute significantly to the expansion of Populus NAC gene family. The comprehensive expression profiles analysis provides first insights into the functional divergence among members in NAC gene family. In addition, the high divergence rate of expression patterns after segmental duplications indicates that NAC genes in Populus are likewise to have been retained by substantial subfunctionalization. Taken together, our results presented here would be helpful in laying the foundation for functional characterization of NAC gene family and further gaining an understanding of the structure-function relationship between these family members.


DOI: 10.1186/1471-2229-10-145
PubMed: 20630103
PubMed Central: PMC3017804


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa.</title>
<author>
<name sortKey="Hu, Ruibo" sort="Hu, Ruibo" uniqKey="Hu R" first="Ruibo" last="Hu">Ruibo Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101</wicri:regionArea>
<wicri:noRegion>Qingdao 266101</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qi, Guang" sort="Qi, Guang" uniqKey="Qi G" first="Guang" last="Qi">Guang Qi</name>
</author>
<author>
<name sortKey="Kong, Yingzhen" sort="Kong, Yingzhen" uniqKey="Kong Y" first="Yingzhen" last="Kong">Yingzhen Kong</name>
</author>
<author>
<name sortKey="Kong, Dejing" sort="Kong, Dejing" uniqKey="Kong D" first="Dejing" last="Kong">Dejing Kong</name>
</author>
<author>
<name sortKey="Gao, Qian" sort="Gao, Qian" uniqKey="Gao Q" first="Qian" last="Gao">Qian Gao</name>
</author>
<author>
<name sortKey="Zhou, Gongke" sort="Zhou, Gongke" uniqKey="Zhou G" first="Gongke" last="Zhou">Gongke Zhou</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20630103</idno>
<idno type="pmid">20630103</idno>
<idno type="doi">10.1186/1471-2229-10-145</idno>
<idno type="pmc">PMC3017804</idno>
<idno type="wicri:Area/Main/Corpus">003126</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003126</idno>
<idno type="wicri:Area/Main/Curation">003126</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003126</idno>
<idno type="wicri:Area/Main/Exploration">003126</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa.</title>
<author>
<name sortKey="Hu, Ruibo" sort="Hu, Ruibo" uniqKey="Hu R" first="Ruibo" last="Hu">Ruibo Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101</wicri:regionArea>
<wicri:noRegion>Qingdao 266101</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qi, Guang" sort="Qi, Guang" uniqKey="Qi G" first="Guang" last="Qi">Guang Qi</name>
</author>
<author>
<name sortKey="Kong, Yingzhen" sort="Kong, Yingzhen" uniqKey="Kong Y" first="Yingzhen" last="Kong">Yingzhen Kong</name>
</author>
<author>
<name sortKey="Kong, Dejing" sort="Kong, Dejing" uniqKey="Kong D" first="Dejing" last="Kong">Dejing Kong</name>
</author>
<author>
<name sortKey="Gao, Qian" sort="Gao, Qian" uniqKey="Gao Q" first="Qian" last="Gao">Qian Gao</name>
</author>
<author>
<name sortKey="Zhou, Gongke" sort="Zhou, Gongke" uniqKey="Zhou G" first="Gongke" last="Zhou">Gongke Zhou</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (MeSH)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Order (MeSH)</term>
<term>Genes, Plant (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (classification)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Gènes de plante (génétique)</term>
<term>Motifs d'acides aminés (MeSH)</term>
<term>Ordre des gènes (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (classification)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>RT-PCR (MeSH)</term>
<term>Reproductibilité des résultats (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genes, Plant</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Gènes de plante</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>Populus</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Chromosome Mapping</term>
<term>Gene Expression Profiling</term>
<term>Gene Order</term>
<term>Phylogeny</term>
<term>Reproducibility of Results</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Cartographie chromosomique</term>
<term>Motifs d'acides aminés</term>
<term>Ordre des gènes</term>
<term>Phylogenèse</term>
<term>RT-PCR</term>
<term>Reproductibilité des résultats</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>NAC (NAM, ATAF1/2 and CUC2) domain proteins are plant-specific transcriptional factors known to play diverse roles in various plant developmental processes. NAC transcription factors comprise of a large gene family represented by more than 100 members in Arabidopsis, rice and soybean etc. Recently, a preliminary phylogenetic analysis was reported for NAC gene family from 11 plant species. However, no comprehensive study incorporating phylogeny, chromosomal location, gene structure, conserved motifs, and expression profiling analysis has been presented thus far for the model tree species Populus.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In the present study, a comprehensive analysis of NAC gene family in Populus was performed. A total of 163 full-length NAC genes were identified in Populus, and they were phylogenetically clustered into 18 distinct subfamilies. The gene structure and motif compositions were considerably conserved among the subfamilies. The distributions of 120 Populus NAC genes were non-random across the 19 linkage groups (LGs), and 87 genes (73%) were preferentially retained duplicates that located in both duplicated regions. The majority of NACs showed specific temporal and spatial expression patterns based on EST frequency and microarray data analyses. However, the expression patterns of a majority of duplicate genes were partially redundant, suggesting the occurrence of subfunctionalization during subsequent evolutionary process. Furthermore, quantitative real-time RT-PCR (RT-qPCR) was performed to confirm the tissue-specific expression patterns of 25 NAC genes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Based on the genomic organizations, we can conclude that segmental duplications contribute significantly to the expansion of Populus NAC gene family. The comprehensive expression profiles analysis provides first insights into the functional divergence among members in NAC gene family. In addition, the high divergence rate of expression patterns after segmental duplications indicates that NAC genes in Populus are likewise to have been retained by substantial subfunctionalization. Taken together, our results presented here would be helpful in laying the foundation for functional characterization of NAC gene family and further gaining an understanding of the structure-function relationship between these family members.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20630103</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>10</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<PubDate>
<Year>2010</Year>
<Month>Jul</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa.</ArticleTitle>
<Pagination>
<MedlinePgn>145</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-10-145</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">NAC (NAM, ATAF1/2 and CUC2) domain proteins are plant-specific transcriptional factors known to play diverse roles in various plant developmental processes. NAC transcription factors comprise of a large gene family represented by more than 100 members in Arabidopsis, rice and soybean etc. Recently, a preliminary phylogenetic analysis was reported for NAC gene family from 11 plant species. However, no comprehensive study incorporating phylogeny, chromosomal location, gene structure, conserved motifs, and expression profiling analysis has been presented thus far for the model tree species Populus.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In the present study, a comprehensive analysis of NAC gene family in Populus was performed. A total of 163 full-length NAC genes were identified in Populus, and they were phylogenetically clustered into 18 distinct subfamilies. The gene structure and motif compositions were considerably conserved among the subfamilies. The distributions of 120 Populus NAC genes were non-random across the 19 linkage groups (LGs), and 87 genes (73%) were preferentially retained duplicates that located in both duplicated regions. The majority of NACs showed specific temporal and spatial expression patterns based on EST frequency and microarray data analyses. However, the expression patterns of a majority of duplicate genes were partially redundant, suggesting the occurrence of subfunctionalization during subsequent evolutionary process. Furthermore, quantitative real-time RT-PCR (RT-qPCR) was performed to confirm the tissue-specific expression patterns of 25 NAC genes.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Based on the genomic organizations, we can conclude that segmental duplications contribute significantly to the expansion of Populus NAC gene family. The comprehensive expression profiles analysis provides first insights into the functional divergence among members in NAC gene family. In addition, the high divergence rate of expression patterns after segmental duplications indicates that NAC genes in Populus are likewise to have been retained by substantial subfunctionalization. Taken together, our results presented here would be helpful in laying the foundation for functional characterization of NAC gene family and further gaining an understanding of the structure-function relationship between these family members.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Ruibo</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qi</LastName>
<ForeName>Guang</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kong</LastName>
<ForeName>Yingzhen</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kong</LastName>
<ForeName>Dejing</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Qian</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Gongke</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>07</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023061" MajorTopicYN="N">Gene Order</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>07</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20630103</ArticleId>
<ArticleId IdType="pii">1471-2229-10-145</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-10-145</ArticleId>
<ArticleId IdType="pmc">PMC3017804</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2005 Sep;43(5):745-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Nov;17(11):2993-3006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Dec;44(6):903-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16359384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D247-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 May;46(4):601-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16640597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Aug;141(4):1167-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16896230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):12987-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16924117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2009 Sep 1;444(1-2):10-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19497355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Oct;22(10):1227-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(15):4263-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19858116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Dec;21(12):3749-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19996377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Feb;152(2):1044-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2010 Mar 1;426(2):183-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19995345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2010 May 1;167(7):571-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19962211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):1013-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 2000 Jan;262(6):1047-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10660065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Apr;10(4):516-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10779491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Jun;3(3):224-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10837264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Oct;12(10):1917-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11041886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 Dec 1;14(23):3024-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11114891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Dec 15;290(5499):2105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2001 May;19(5):423-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11329010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Jul;46(5):521-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11516145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Jan;18(1):207-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11836235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Sep;50(2):237-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12175016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2002 Nov;3(11):827-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12415313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2003 Sep;20(9):1377-419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12777501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Sep;15(9):2192-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12953120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2003 Jul 23;3:17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12877745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Dec;36(5):687-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D142-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Jan;9(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Oct;53(3):383-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14750526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2006;6:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17038189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Dec;48(5):806-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17092314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Nov 24;314(5803):1298-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17124321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):2929-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):3132-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):3158-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Jan;63(2):289-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17031511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007;8:42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17286856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):270-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17237351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 May;225(6):1603-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17333250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(4):557-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 May 15;23(10):1307-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jun;50(6):1035-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17565617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Aug;226(3):647-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17410378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007;2(7):e642</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17653269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Dec;56(5):768-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18657234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Oct;20(10):2763-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2008 Dec;15(6):913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19081078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Dec;56(6):867-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18694460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Feb 20;379(4):985-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19135985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19267902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Feb;131(4):915-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14757643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2003 Dec 31;10(6):239-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15029955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2004 Mar;5(3):297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15083810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1679-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1667-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2004 Jun 1;4:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15171794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2278-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2481-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15319476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Sep;39(6):863-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15341629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yi Chuan. 2007 Aug;29(8):1023-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Aug;51(4):617-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(2):288-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17888111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007;7:59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17986329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Feb;53(3):425-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18069942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18221561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(1):77-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(4):652-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2008 Dec;280(6):547-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18813954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2621-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Oct;40(2):173-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15447645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Nov;40(4):462-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15500463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Apr 19;85(2):159-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8612269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Jun;9(6):841-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9212461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Jan 9;92(1):93-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9489703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2005;5:1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15629062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Feb;10(2):79-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15708345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5454-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15800040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(4):R34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):803-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W116-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Aug 15;19(16):1855-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16103214</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Gao, Qian" sort="Gao, Qian" uniqKey="Gao Q" first="Qian" last="Gao">Qian Gao</name>
<name sortKey="Kong, Dejing" sort="Kong, Dejing" uniqKey="Kong D" first="Dejing" last="Kong">Dejing Kong</name>
<name sortKey="Kong, Yingzhen" sort="Kong, Yingzhen" uniqKey="Kong Y" first="Yingzhen" last="Kong">Yingzhen Kong</name>
<name sortKey="Qi, Guang" sort="Qi, Guang" uniqKey="Qi G" first="Guang" last="Qi">Guang Qi</name>
<name sortKey="Zhou, Gongke" sort="Zhou, Gongke" uniqKey="Zhou G" first="Gongke" last="Zhou">Gongke Zhou</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Hu, Ruibo" sort="Hu, Ruibo" uniqKey="Hu R" first="Ruibo" last="Hu">Ruibo Hu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003323 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003323 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20630103
   |texte=   Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20630103" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020